Work Style

Sprints Are the Secret to Getting More Done

 Most workdays aren’t terribly productive. We spend too much time on email, have too many meetings, then struggle to find the willpower and energy to focus on what’s really important.

Although plenty of experts have proposed systems and philosophies for getting more done at work, my writing partner Jake Knapp decided in 2009 to come up with his own solution: the sprint. It’s a five-day process that helps teams focus on one big goal and move from idea to prototype to customer research in that short span of time. The idea is to fast-forward a project, so you can see what the end result might look like and how the market will react. It’s also a popular construct in agile project management.

At GV, we’ve tested the process with more than 100 startups, helping them use sprints to answer big questions, test new business ideas, and solve critical challenges. We’ve seen firsthand, again and again, how they help teams get more done and move faster.

These aren’t all-out, late-night, stack-of-pizza-boxes-on-the-conference-table types of affairs that only work for fledgling internet companies though. They work in larger organizations too, and they fit into a normal working schedule. The sprint day typically lasts from 10 AM to 5 PM, so participants still have plenty of time to see their families and friends, get enough sleep — and, yeah, stay caught up on email.

Why do sprints help teams get more done? It’s not just about speed. It’s also about momentum, focus, and confidence. The companies who use sprints (in fields like oncology, robotics, coffee, and dozens more) see consistent results from the process. Here are five of the most important outcomes.

Sprints help you start. When a big problem is looming, it can be tough to dig in. Sprints make an excellent commitment device — when you gather a team, clear the calendar, and schedule customer interviews, you commit to making progress. GV portfolio company Saviokefound itself in this same situation: the team had spent months developing a delivery robot for hotels, but felt paralyzed by big questions about the robot’s personality and behavior. We planned a sprint, and by the end of the week, a simple robot personality had been tested with actual customers.

Sprints move you from abstract to concrete. Too many projects get stuck in an alternate universe where debates, theories, and hunches are plentiful, but progress is rare. For podcast startup Gimlet Media, an abstract question — “Should we become a technology company?” — was causing anxiety for founders Alex Blumberg and Matt Lieber. They decided to run a sprint on the question, and almost immediately had an answer. After sketching out what their potential future as a tech company would look like and floating it with customers, they decided it wasn’t necessary to reach their goals as a company.

Sprints keep you focused on what’s important. With all the noise, distractions, and demands for your attention at the office, it’s almost impossible to see which issues are really the most critical. That’s why every sprint starts with an entire day devoted to mapping out the problem at hand. Then, after your team has built a shared understanding of the challenge, you can figure out exactly where to turn your attention. When Flatiron Health began work on a new tool for cancer clinics, it naturally began by focusing on doctors and patients, typical stakeholders for their products. But a sprint helped the team realize that research coordinators (the folks who administered clinical trials) were actually more important. By the end of the week, it had tested a prototype with this group and gotten enough positive feedback to move forward with the project.

Sprints force crisp decision-making. Business-as-usual decision-making is busted: we strive for consensus; we don’t make tough calls; we aren’t transparent about how choices are made. The sprint corrects these problems. The leadership at Slack used the process to decide between two fundamentally different marketing approaches. One was unique, bold, difficult to implement, and the CEO’s favorite. The other was more conventional but easier to build. The team could have endlessly debated the merits of each approach until everyone agreed on one, or just gone with the CEO’s hunch, but instead they launched a sprint to prototype and test both. After Friday’s customer test, the results were clear: the simpler marketing was more effective.

Sprints encourage fast follow-up. Your team will accomplish a ton in every sprint, but the knock-on effects — the confidence of knowing you’re on the right road — are even more powerful. When LendUp began working on a new credit card for consumers with no or low credit, the team had many ideas for helpful features, but no clue how to prioritize them so it could design and launch the product. In our sprint together, we created fake marketing around all the possible features. Armed with the results — a clear delineation between essential and unimportant — the team went full speed ahead with the card.

Sprints work for teams and organizations of any size, from small startups to Fortune 100s to nonprofits. If you’re a leader with a big opportunity, problem, or idea, it will help you get started, stay focused, decide quickly and build a workplace where more things get done.

John Zeratsky is a design partner at GV and co-author of SPRINT: How to Solve Big Problems and Test New Ideas in Just Five Days (Simon & Schuster, 2016).


Digital Operations: Robotic Process Automation

“Looking to the future, the next big step will be for the very concept of the “device” to fade away. Over time, the computer itself—whatever its form factor—will be an intelligent assistant helping you through your day. We will move from mobile first to an AI first world.” 

— Sundar Pichai, CEO Google

BotReadinessRobotic process automation (RPA) is becoming a mainstream topic at leading corporations as C-Suite execs look at new automated strategies to do more with less.

Process automation is taking center stage again. Outsourcing, offshoring strategies are delivering diminishing returns so a new frontier enabled by a virtualized workforce of software robots is emerging.

I have seen a massive uptick of interest in digitizing work – automate key processes and increase efficiency – via robotic process automation. Large corporations like Citibank are openly discussing this trend with vendors as they race to cut operating costs further.

Digital robots ∼ Apple Siri, Microsoft Cortana, IBM Watson, Google DeepMind, Facebook Chat Bots, drones and driverless cars ∼ are now mainstream. What most people are not aware of is the rapidly advancing area of enterprise robots to create a “virtual FTE  workforce” and transform business processes by enabling automation of manual, rules based, back office administrative processes.

This emerging re-engineering of key back-office and front-office operations is called Robotic Process Automation (RPA).  Machine Learning (ML), guided ML, NLP and graph processing are becoming foundations for the next wave of advanced bot use cases. Speech recognition, image processing, translation have gone from demo technology to everyday use in part because of machine learning.

RPA – What?

According to Blue Prism, “Robotic automation refers to a style of automation where a machine, or computer, mimics a human’s action in completing rules based tasks.”

RPA is essentially the novel application of analytics, machine learning and rules based software to capture and interpret existing data input streams for processing a transaction, manipulating data, triggering responses and communicating with other enterprise applications (ERP, HRMS, SCM, SFA, CRM etc.).

RPA is not a question of “if” anymore but a question of “when.”  This is truly the next frontier of business process automation and enterprise cognitive computing. Immediate impact is being seen around self-service processes, customer facing processes, call center interactions, finance and accounting processes.

Industrial robots are remaking factory and warehouse automation by creating higher production rates and improved quality.  RPA, simple robots and complex learning robots, are revolutionizing the way we think about and administer business processes (e.g. customer service), workflow processes (e.g., order to cash), IT support processes (e.g., auditing and monitoring), and back-office work (e.g., data entry).

I strongly believe that as machine learning becomes mainstream, RPA is going to impact process outsourcers (e.g., call center agents) and labor intensive white collar jobs (e.g., compliance monitoring) in a big way over the next decade. Any company that uses labor on a large scale for general knowledge process work, where workers are performing high-volume, highly transactional process functions, will save money and time with robotic process automation software.

RPA picture

Business Impact of RPA – Where?

RPA is already being applied to a wide range of industries to improve speed, quality and consistency of service delivery of digital work.

Virtual FTE robots can:

  • Learn from natural language interactions in order to solve customer problems and respond easily to a wide range of queries
  • Automate data and rules intensive activities like HR, procurement, invoicing, billing. Now it is possible to create complex cross-enterprise apps (xapps or composite apps) like order-to-cash automation.
  • Orchestrate other application software apps through the existing APIs or user interface

Workflow and Process automation

Clerical labor is replaced by software.

Best projects for robot automation are bulk repetitive rules based procedures. Process automation can expedite back-office tasks in finance, procurement, supply chain management, accounting, customer service and human resources, including data entry, purchase order issuing, creation of online access credentials, or business processes that require access to multiple existing systems.

Technologies like BPM software – a technology that mimics the steps of a rules-based, non-subjective process without compromising the existing IT architecture – are able to consistently carry out prescribed functions and easily scale up or down to meet demand.

Automated agents and assistant

Large call centers are going to get restructured. The people answering simple queries will be replaced by 2020 with software bots.

As in voice recognition software, IVR or automated online assistants, developments in how machines process natural language, retrieve information and search mean that RPA can provide answers to self-service customers without human intervention. I can see demand reducing systematically for armies of low-cost labor offshore that do simple tasks like status checking…. query multiple systems and respond;  data entry…input into multiple systems and error check.

Voice driven self service bots are going to transform call centers. Siri and FB Chatbots are the precursors of what’s coming.  Translation is another example. Recently combined translation with computer vision and doing it all on the phone, where you can take a picture of a sign that say “Exit” and have it translated into another language.

The bot engines rely on NLP and machine learning. It means that you can feed the bot sample conversations so that it can handle many different variations of the same questions. The potential is quite big as developers could improve their bots over time. So for instance, you could open up a conversation with a Movie bot and casually ask questions about movie showtimes, ratings and more. It will be like talking with a human agent.

Monitoring support and management

‘Human only’ processes will shift as machine learning and data-driven decision making evolve further.

Activity, fraud and risk monitoring is going thru some changes. Automated processes in the remote management of IT logs, audit trails, security, and other risk related areas can consistently monitored, flagged and exception handled faster.   In IT function specifically, RPA can improve service desk operations and the monitoring of network devices.

KPMG, for instance, is leveraging IBM Watson in improving Audit, Tax processes. One current initiative is focused on employing supervised cognitive capabilities to analyze much larger volumes of structured and unstructured data related to a company’s financial information, as auditors “teach” the technology how to fine-tune assessments over time. This enables audit teams to have faster access to increasingly precise measurements that help them analyze anomalies and assess whether additional steps are necessary.

This example highlights how cognitive technology is further advancing improvements to sampling processes, in which auditors review subsets of data to analyze thousands or millions of actions to draw conclusions. Cognitive technology helps allow for the possibility of a larger percentage of the data to be analyzed, providing KPMG professionals the potential to obtain enhanced insights into a client’s financial and business operations. At the same time, cognitive-enabled processes allow auditors to focus on higher value activities, including offering additional insights around risks and other related findings.

Many of professional services rely heavily on judgment-driven processes. Adding RPA and cognitive technology’s massive data analysis and innovative learning capabilities to these activities has the potential to advance traditional views on how talent, time, capital and other resources are deployed by professional services organizations.

How is a Software Robot Trained?

  • A robot is trained through a flow chart of the procedure. This flow chart is managed and audited to document how well the robot follows the procedure.
  • Management information (e.g., log files)  is gathered automatically as the robot operates. All processes generate statistical profiles as a by-product of doing the action. This allows tuning and development of a process in light of real data.
  • Modern robots systems come with failover and recovery inbuilt as core capabilities. It means that if changes take place, or downstream failures occur a “smart” response can be trained into the overall system.
  • Software robot platforms have full audit and security authorization meaning that all changes and all access is recorded and regulated. Back-up process steps are managed, roll-back and recovery, as well process change-highlighting, are all automatically captured by the robot platform.

[source: Blue Prism]


The robots are coming to digitize work! Enhanced scalability, greater accuracy, digital integration with APIs, improved compliance and reduced cycle times to deploy – as these improve… RPA adoption will take off.

Analytics enabled Robotic process automation (RPA) will drive improvements in accuracy and cycle time and increased productivity in transaction processing (e.g., healthcare claims processing) while it elevates the nature of work by removing people from dull, repetitive tasks.

RPA is in early days.  So, sometimes the hype can get ahead of the reality.  But this is an area where I am going to be digging deeper in subsequent blog posts.

Source: disruptivedigital